

EMI Reduction and Output Ripple Improvement of Switching DC-DC Converters with Linear Swept Frequency Modulation

Minh Tri Tran^{*}, Natsuko Miki, Yifei Sun Yasunori Kobori and Haruo Kobayashi

Gunma University, Japan

Outline

- 1. Research Background
 - Applications of Switching Power Supply
 - Basic Switching Converter
- 2. Conventional EMI Reduction
 - EMI Reduction with Frequency Modulation
 - Enlargement of Output Ripple
- 3. Proposed EMI Reduction with Ripple Improvement
 - Linear Swept Frequency Modulation
 - Simulation Results
- 4. Conclusions

Outline

1. Research Background

- Applications of Switching Power Supply
- Basic Switching Converter
- 2. Conventional EMI Reduction
 - EMI Reduction with Frequency Modulation
 - Enlargement of Output Ripple
- 3. Proposed EMI Reduction with Ripple Improvement
 - Linear Swept Frequency Modulation
 - Simulation Results
- 4. Conclusions

1. Research Background Applications of Switching Power Supply

EMI: Electro Magnetic Interference

1. Research Background Research Objective

Development of power supply with

- Fast Response & High Efficiency
- Low EMI Noise
- **Small Output Ripple**

Approach

- **O EMI Noise Reduction with Frequency Modulation**
- PWM Duty Compensation in SAW Generator

1. Research Background Basic Switching Converter

Basic Switching Converter

Merits

- o Downsizing
- Light Weight
- > High Efficiency

High Efficiency Switching → Reduce energy consumption

- Extend battery operating time
- Minimize costs of systems

Demerits Output Ripple Switching noise Harmonic noise

1. Research Background Voltage Feedback Control

1. Research Background

Simulation Results of Basic Switching Converter

Operation conditions:

- Input Voltage (Vin): 12V
- Output Voltage (Vo): 5.0V
- Output Current (Io): 0.5A
- Clock Frequency (Fck): 200kHz
- Current Step (∠Io) : 0.5A

- Output Ripple: 2.5mV_{pp}
- Over-shoot: 9.0mV
- Under-shoot : 9.0mV

Simulation Results

1. Research Background Spectrums of EMI Noise

Outline

- 1. Research Background
 - Applications of Switching Power Supply
 - Basic Switching Converter
- 2. Conventional EMI Reduction
 - EMI Reduction with Frequency Modulation
 - Enlargement of Output Ripple
- 3. Proposed EMI Reduction with Ripple Improvement
 - Linear Swept Frequency Modulation
 - Simulation Results
- 4. Conclusions

2. Conventional EMI Reduction EMI Reduction with Frequency Modulation

2. Conventional EMI Reduction Spread Spectrum of PWM Pulse

2. Conventional EMI Reduction PWM Duty variation (∠D) with SAW Signal

Duty Variation of SAW

Modified duty (D'): $D' = \frac{W}{T_{c} - \Delta T}$ **Original duty (Do):** $D_o = \frac{vv}{T}$ **Relation between D' & D**_o $\frac{D'}{D_o} = \frac{T_o - \Delta T}{\frac{W}{T_o}} = 1 - \frac{1}{\frac{W}{T_o}}$

2. Conventional EMI Reduction Enlargement of Output Ripple

Outline

- 1. Research Background
 - Applications of Switching Power Supply
 - Basic Switching Converter
- 2. Conventional EMI Reduction
 - EMI Reduction with Frequency Modulation
 - Enlargement of Output Ripple

3. Proposed EMI Reduction with Ripple Improvement

- Linear Swept Frequency Modulation
- Simulation Results
- 4. Conclusions

3. Proposed EMI Reduction with Ripple Improvement Duty Compensation of SAW

3. Proposed EMI Reduction with Ripple Improvement Linear Swept Frequency Modulation

SAW Current Compensation

3. Proposed EMI Reduction with Ripple Improvement Optimization of Conduction G

Ripple with various G ($0 \sim 800$ uS)

Ripple with various G (500~ 510uS)

3. Proposed EMI Reduction with Ripple Improvement Conduction G vs Modulated Ripple (V_{MR})

Conduction G vs Modulated Ripple

3. Proposed EMI Reduction with Ripple Improvement Conduction G vs Output Ripple

Vm: 2.0Vpp, triangle wave
G=510uS

Output Ripple =Modulation Ripple +Switching Ripple (V_{MR} = 1.0 mV) (V_{SR} = 2.2 mVpp)

Linear Swept Frequency Modulation

Ripple with G=510 uS

Proposed EMI Reduction with Ripple Improvement 3. **Spectrum with Compensation**

With Current Compensation \rightarrow Fck Spectrum : 0.5V (-16 dB Reduction)

Spectrums w/o & with compensation

Spectrum level vs. Fm * Peak level: proportional to Fm * No concern with compensation

Proposed EMI Reduction with Ripple Improvement 3. **Ripple Improvement with Compensation**

Ripple improvement

Outline

- 1. Research Background
 - Applications of Switching Power Supply
 - Basic Switching Converter
- 2. Conventional EMI Reduction
 - EMI Reduction with Frequency Modulation
 - Enlargement of Output Ripple
- 3. Proposed EMI Reduction with Ripple Improvement
 - Linear Swept Frequency Modulation
 - Simulation Results
- 4. Conclusions

4. Conclusions

DC-DC Switching Converter:

- Developed output ripple compensation method with Fck modulation & EMI reduction
- Analyzed relationship between Fck modulation level and compensated current of SAW generator.

 $G = I_{saw} / V_{b}$

- Keep output ripple < 2mV and EMI reduction –16 dB
 Future of Work
- Implement this method
- Apply to other types of converters

Thanks for your kind attention!

Appendix

$$\frac{\Delta T}{T_o} = \frac{\Delta W}{W} = \frac{2\left(V_m / V_b\right)}{T_m}$$

Current I_{SAW} of SAW $I_{SAW} = \frac{V_{SAW} * C}{T_o}$